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Abstract—Multi-parameter cognition in a cognitive radio
network provides a potential avenue to more efficient spectrum
usage. In this paper, we propose a two-stage spectrum sharing
strategy, where the primary user operates with multiple trans-
mit power levels. Different from the conventional approaches,
our method does not require any prior knowledge of the pri-
mary transmitter (PT) power characteristics. In the first stage,
we use a conditionally conjugate Dirichlet process Gaussian
mixture model to capture the multi-level power characteristics
inherent in the PT signals, and design a Bayesian inference
method to infer the model parameters. In the second stage, we
propose a secondary transmitter (ST) prediction-transmission
method based on reinforcement learning, which adapts to the
PT power variation and strike an excellent tradeoff between
the secondary network throughput and the interference to the
primary network. The simulation results show the effectiveness
of the proposed strategy.

I. INTRODUCTION

The emerging new wireless technologies are fueling an

ever-increasing demand for access to the radio frequency

spectrum. Cognitive radio (CR) opens a potential commu-

nication paradigm to achieve more efficient and flexible

spectrum use [1]. A secondary user (SU) with CR capability

monitors the spectrum utilization of a primary user (PU) and

determines its access to such spectrum accordingly. The SU

first senses the surrounding radio spectrum state based on

various signal processing methods, where energy detection

[2] features low computational and implementable complex-

ity, and is widely adopted. Upon obtaining the radio spectrum

state, the SU accesses the licensed spectrum either when the

PU is idle [3], or concurrently with the PU following a power

control strategy to constrain the interference to the PU [4].

It is worth noting that many contemporary wireless stan-

dards, such as IEEE 802.11, GSM, and LTE, have specified

multiple transmit power levels to dynamically adapt to the

fast changing environment and varying quality of service.

However, only limited studies in the literature took this into

account, while the majority assume the SU adopts a binary

approach in reporting the radio spectrum state as idle or busy.

In [5] and [6], the authors proposed an energy detection based

multiple hypothesis test to derive the decision thresholds

for the multiple power level identification. The results were

extended to the scenarios with noise uncertainty [7] and non-

Gaussian transmission signals [8]. However, all the methods

in [5]–[8] made a fundamental assumption that the ST has the

full prior knowledge of the PT transmit power mode, which

are unlikely to be available to the ST a prior.

In this paper, we propose a two-stage spectrum sharing

strategy. In the first stage, based on machine learning theory,

we propose a blind spectrum learning method to model

the received PT signals at the ST and discover their latent

patterns reflecting the power variation. It is blind in the sense

that the ST does not require any prior knowledge of the PT

transmit power mode. In the second stage, we propose a

secondary transmitter (ST) prediction-transmission method,

where the prediction part in our method can identify the

current PT power level through collecting PT signal samples,

and the transmission part adjusts the ST power accordingly.

Furthermore, we dynamically determine the interval between

predictions, which can be formulated as a partial observable

decision problem.

The main contributions of this paper are summarized as

follows. We propose a two-stage spectrum sharing strategy

for a CR network, enabling the spectrum access when the

PT power varies with time in multiple levels. We propose

to utilize the Gaussian mixture models to capture the mul-

tiple signal levels received by the ST, and carry out the

Bayesian inference to estimate the model parameters. We

propose a prediction-transmission method for the spectrum

access which enables the ST to closely adapt to the PT

power variation.

II. SYSTEM MODEL

We consider a spectrum sharing CR network with a pri-

mary network consisting of a PT and a primary receiver (PR),

and a secondary network consisting of a ST and a secondary

receiver (SR). Transmission happens simultaneously in both

networks sharing the same frequency band. It is assumed that

there is no information exchange between the primary and

secondary networks. The PT operates with multiple power

levels, and the ST attempts to learn the PT transmit power

mode and then optimize the spectrum access accordingly.

We propose a novel two-stage spectrum sharing strategy,

as illustrated in Fig. 1. Let {Pl, l = 1, · · · , L} be the

transmit powers of the PT, where P1 < · · · < PL−1 and

PL = 0 indicates an idle PT. For convenience, hypothesis

Hl indicates that the PT transmits with power Pl. We define

the time duration of each hypothesis as a random variable
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Fig. 1. The proposed two-stage spectrum sharing strategy. The sensing slots of the ST in both stages have the same time duration Tss. The sensing slots
in the first stage are used for learning, while that in the second stage are for prediction.

Tpo, which is usually much larger than that of the ST sensing

slot Tss and the ST transmission block Tst. In this paper, we

consider a time discretized model with a minimum time unit

Tss. We denote τs = Tst/Tss as the fixed discretized time

duration of the ST transmission block, and τp = Tpo/Tss

as the varied discretized PT power level duration. The prior

knowledge on the PT transmit power mode, defined as the

number of transmit powers L, the exact values Pl, and the

prior probability of each hypothesis Pr{Hl}, are unknown

to the ST.

In the first stage, the ST samples the received PT signals

at a sampling frequency fs and collects Ns samples in each

sensing slot with duration Tss. The ST observes N sensing

slots in the first stage and collects a total of NNs samples.

It is assumed that the learning period is reasonably large so

that it covers all L hypotheses. Thus, the i-th sample in the

n-th sensing slot under hypothesis Hl can be given by

Rn[i] =
√
Plsn[i]+un[i], Hl, i = 1, · · · , Ns;n = 1, · · · , N,

(1)

where
√
Plsn[i] is the received primary signal in the n-th

sensing slot with average power Pl. Following [9], we assume

that sn[i] is an independent and identical distributed (i.i.d.)

random process with mean 0 and variance 1. Without loss of

generality, we assume that sn[i] is a complex PSK modulated

signal [9]. In (1), un[i] ∼ CN (0, σ2
u) is the additive white

Gaussian noise with mean 0 and precision σ2
u. The test

statistic in the n-th sensing slot can be calculated as

Xn =
1

Ns

Ns∑
i=1

|Rn[i]|2 , Hl. (2)

When Ns is large, according to the central limit theorem, the

distribution of Xn under hypothesis Hl can be approximated

by a Gaussian one, and we have

Xn ∼ N
(
(γl

st + 1)σ2
u,

1

Ns
(2γl

st + 1)σ4
u

)
, Hl, (3)

where γl
st = Pl/σ

2
u is the received signal-to-noise ratio

(SNR) at the ST and N (μ, S−1) denotes the Gaussian

distribution with mean μ and precision S. Considering all the

hypotheses, we establish that Xn follows a mixed Gaussian

distribution

Xn ∼
L∑

l=1

πlN (μl, S
−1
l ), (4)

where 0 � πl � 1 is the mixing coefficients with
∑L

l=1 πl =
1. In each Gaussian density, N (μl, S

−1
l ) is a component of

the mixture with mean value μl = (γl
st+1)σ2

u and precision

Sl =

(
1

Ns
(2γl

st + 1)σ4
u

)−1

.

Given the observation set X = {X1, · · · , XN}, the

proposed Bayesian nonparametric method aims to infer the

Gaussian Mixture Models (GMM) parameter set {θ,π, L},

where θ = {θ1, · · · , θL}, θl = {μl, Sl} and π =
{π1, · · · , πL}.

For the SU, there is a fundamental tradeoff between two

conflicting goals, namely, maximization of its own through-

put and minimization of its interference to the PU. It is

extremely difficult to optimize this tradeoff in practice when

there is no information exchange or cooperation between the

PU and SU. To provide a pragmatic solution to this dilemma,

we propose a new metric, referred to as the normalized

power level alignment (NPLA), which is defined as the time

proportion that the ST matches its transmit power level to

that of the PT.

Therefore, in the second stage, we propose a prediction-

transmission method adapting to the PT power level variation.

As shown in Fig. 1, two actions exist: prediction and trans-

mission. In the prediction, the ST can easily identify the cur-

rent PT power level l, which is jointly determined by the test

statistic Xn, n > N in (2) and the inferred GMM parameter

set {θ,π, L}. In the transmission, the ST adjusts its transmit

power level k to match the latest identified PT power level l
(k = l). In the proposed non-periodic prediction-transmission

method, the intervals are dynamically determined to enhance

the NPLA performance. As shown in Fig. 1, zero intervals

are used to track the PT power variation, while long intervals

are selected to avoid unnecessary prediction.

III. SPECTRUM LEARNING BASED ON BAYESIAN

INFERENCE

In this section, we focus on the first stage, and introduce

a Bayesian nonparametric method to infer the GMM pa-

rameter set {θ,π, L} based on the signal set X. As L is

unknown a priori, the traditional methods, such as the K-

mean and expectation maximization (EM), are inapplicable.

This motivates us to resort to Dirichlet process Gaussian

mixture model (DPGMM) [10], which is able to identify

the unknown number of Gaussian components. For specific
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Bayesian inference, we choose the Markov chain Monte-

Carlo based Gibbs sampling method [11] for its simplicity.

A. Dirichlet Process Mixture Model

The Dirichlet distribution is an extension of the Beta dis-

tribution for multivariate cases. It represents the probability

of K events given that the k-th event xk (k = 1, · · · ,K) has

been observed αk−1 times. The probability density function

can be expressed as

Dir(α1, · · · , αK) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , (5)

where Γ(·) denotes the Gamma function, πk is the probability

of the k-th event xk with
∑K

k=1 πk = 1, and πk > 0.

In our application, the event xk represents the k-th pos-

sible PT transmit power level, which can not be observed

explicitly. Instead, the explicit observation is the test statistic

Xn. As Xn is drawn from a distribution based on event xk,

we introduce the DPMM to define the distribution of Xn.

Here, Xn can be regarded as an independent draw from the

distribution F (θn), where each θn = φzn is an i.i.d. draw

from a base probability distribution G0. We introduce zn
to explicitly indicate which transmit power level that Xn

is associated with, and will be referred to as an indicator

hereafter. Mathematically, the DPMM can be expressed as

Xn|{z,φ} ∼ F (φzn), p(zn = k) = πk,

π|{α,K} ∼ Dir(α/K, · · ·α/K), φk|G0 ∼ G0,
(6)

where z = {z1, · · · , zN} is the set of indicators, φ =
{φ1, · · · , φK} is the set of unique values in θ. Hereafter, K
refers to the total number of Gaussian components, and each

component consists of the observations that are determined

by the ST as having the same transmit power level. Let

Nk denote the number of observations assigned to the k-th

component, then the distribution of the indicators is

p(z|π) =
K∏

k=1

πNk

k . (7)

Integrate out the mixing proportions of the product of p(π|α)
and p(z|π), the prior on z in terms of α is expressed as [10]

p(z|α) = Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)
. (8)

As all the observations are exchangeable, if we assume that

z−n = {z1, · · · , zn−1, zn+1, · · · , zN} has been obtained, the

conditional distribution for the individual indicator is given

by

p(zn = k|z−n, α) =
p(zn = k, z−n|α)

p(z−n|α)
=

N−n,k + α/K

N − 1 + α
,

(9)

where N−n,k is the number of samples excluding Xn in the

k-th component.

B. Conditionally Conjugate Dirichlet Process Gaussian Mix-
ture Model

Recall that the observation Xn in (4) follows a mixed

Gaussian distribution, Xn can be modeled as a DPGMM and

expressed as

Xn|{z,φ} ∼ N (μzn , S
−1
zn ), (μk, S

−1
k ) ∼ G0,

π|{α,K} ∼ Dir(α/K, · · ·α/K), p(zn = k) = πk.
(10)

In (10), G0 represents a prior guess of the distributions of

μk and S−1
k in the DPGMM. In our case, the distribution of

G0 specifies the prior on the mixture Gaussian distributions

parameters μ = {μ1, · · · , μK} and S = {S1, · · · , SK},

which will lead to an undesirable dependence of μk on Sk. To

remove such dependency, we modify the original conjugate

feature in the DPGMM and introduce the conditionally

conjugate version of DPGMM (CCDPGMM) which can be

given by [12]

μk|{λ,R} ∼ N (λ,R−1), Sk|{β,W} ∼ G(β,W−1),
(11)

where ξ, R, β and W is the hyperparameter for the

DPGMM and G(a, b) denotes the Gamma distribution with

shape parameter a and scale parameter b. To complete the

CCDPGMM and capture the features inherent in X , we

impose vague priors for the hyperparameters following [10],

λ ∼ N (μy, S
−1
y ), R ∼ G(1, Sy),

W ∼ G(1, S−1
y ), β−1 ∼ G(1, 1),

(12)

where the hyperpriors μy and Sy refer to the empirical mean

and precision of X, respectively.

C. Inference Using Gibbs Sampling

Given the likelihood of μk and Sk in (4) and their priors in

(11), we can multiply the priors by the likelihood conditioned

on z and obtain the conditional posterior distributions of μk

and Sk. The conditional posteriors of the hyperparameters

can be obtained similarly.

To make the CCDPGMM applicable to the scenario with

an infinite number of Gaussian components, we let K → ∞
in (9) and the conditional prior reaches the following limits

p(zn = k|z−n, α) =

⎧⎪⎨
⎪⎩

N−n,k

N − 1 + α
, N−n,k > 0,

α

N − 1 + α
, N−n,k = 0.

(13)

Following [11], we employ the auxiliary variable sampling

algorithm, which means adding k0 auxiliary components in

each sampling iteration to represent the effect of the auxiliary

components. We combine the priors of z with its likelihood

given in (9), the conditional posterior can be given by

p(zn = k′|z−n, μk′ , Sk′ , α)

=

⎧⎪⎨
⎪⎩

qN−n,k′N (Xn|μk′ , Sk′)

N − 1 + α
, 1 � k′ � K ′,

qαN (Xn|μk′ , Sk′)

k0(N − 1 + α)
, K ′ < k′ � K ′ + k0,

(14)

where k′ is the index of unique components in each iteration

during the Gibbs sampling algorithm, q is the appropriate
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constant for normalization, and K ′ is the number of active

components. To this end, we summarize the sampling algo-

rithm in Algorithm 1.

Algorithm 1 Gibbs sampling algorithm.

Require:
Initial observation set X. Set a component which contains
all Xn. Initialize the hyperparameters λ, R, β, and W , the
hyperpriors μy and Sy , and the indicator set z;

Ensure:
The sets z, μ, and S.

1: Update μ and S conditional on the indicator z and hyperpa-
rameters λ, R, β and W ;

2: Update the hyperparameters λ, R, β and W conditional on
hyperpriors μy and Sy;

3: for n = 1, 2, · · · , N do
4: if zn �= zn′ for all n′ ∈ {1, · · · , n−1, n+1, · · · , N} then
5: Let zn = K′ + 1.
6: end if
7: Draw μk′ and Sk′ for k′ ∈ {K′+1, · · · ,K′+k0} following

(11).
8: Update the indicator zn following (14).
9: Discard the empty components.

10: end for

IV. PROPOSED PREDICTION-TRANSMISSION SPECTRUM

ACCESS METHOD

In this section, we propose a prediction-transmission

method for spectrum access. We first introduce the functions

of the prediction and transmission parts. Then, we present

the details of how to determine the prediction intervals. As

directly optimizing the NPLA performance is intractable, we

propose to maximize an expected average utility by imposing

reward (penalty) for power level match (mismatch).

A. Functions of the Prediction and Transmission Parts

In the prediction part, with the inferred GMM parameters

{θ,π, L}, the ST can easily identify the current PT power

level by a single sensing slot with test statistic Xn, based on

the following criterion

k = arg max
k∈{1,··· ,K}

πkN (Xn|μk, Sk). (15)

In the transmission part, the ST adjusts its transmit power

level k to match the PT power level l, which means k = l.
Note that K is an estimate of L. In the simulation, we find

that the CCDPGMM is able to identify L (K = L) with a

high probability.

B. Non-periodic Prediction-Transmission Method

The essential question of designing a non-periodic

prediction-transmission method is how to determine the

prediction intervals. Basically, this needs to find out the

distribution of the PT power level duration, and the corre-

sponding observation of each action. If the prediction action

is taken, the observation will be the PT power level identified

from the received test statistic Xn according to (15). If the

transmission action is taken, the observation will be a positive

or negative acknowledgment (ACK) received by the ST from

the SR. Based on these observations, the ST can infer the

PT transmit power level, and then dynamically adjust the

prediction intervals.

Without loss of generality, the discretized PT power level

duration τp of all hypotheses is assumed to follow a Poisson

distribution with the same mean value ν. Its cumulative

distribution function can be given by

Fν(τ) =
Γ (τ + 1, ν)

Γ (τ)
, (16)

where Γ(·, ·) denotes the incomplete Gamma function and ν
is the mean value of the Poisson distribution, which can be

estimated in the first stage. If the PT has been keeping the

same power level for time τ immediately after a power level

change, the probability that the PT will continue staying in

the same power level during the following discretized time

duration τ0 can be expressed as

gτ (τ0) =
1− Fν(τ + τ0)

1− Fν(τ)
, τ0 � 1. (17)

We define an L × L transition probability matrix C for

the PT transmit power levels. The element Ckj , k, j ∈
{1, · · · , L} of C refers to the probability that the PT transfers

from the k-th to the j-th transmit power level, and is given by

Ckj =

⎧⎨
⎩

πj

1− πk
, k �= j,

0, k = j.
(18)

We also define the vector ck as the k-th row of matrix C.

We also defined an L × L prediction probability matrix

H, with the element Hkj = Pr{Ĥj |Hk}, k, j ∈ {1, · · · , L},

representing the probability that the PT is operating under

hypothesis Hk while the detection by the ST is in favor of

hypothesis Hj . Ĥj represents that the ST identifies the PT

operating in the j-th transmit power level following (15). We

also define vector hj as the j-th column of matrix H.

We denote the prediction action of the ST at time τ as aτ =
0, and its observation as OE

τ ∈ {Hk}. We also denote the

transmission action at time τ as aτ = 1, and its observation

as OA
τ ∈ {A(positive ACK),N (negtive ACK)}. Let pkτ+τ0

denote the conditional probability that the PT keeps operating

with the k-th transmit power level at time τ + τ0 given pk0 =
1 and {a0, · · · , aτ , O0, · · · , Oτ}, where Oτ ∈ {OE

τ , O
A
τ }.

Based on Bayesian rule, the probabilities of PT staying in

the k-th power level at time τ + τ0, τ0 ∈ {1, τs}, can be

given as follows. When aτ = 0, τ0 = 1, we have

pkτ+1(O
E
τ+1)

=

⎧⎪⎪⎨
⎪⎪⎩

pkτg
E
τ Hkk

pkτg
E
τ Hkk + (1− pkτg

E
τ )ckhk

, OE
τ+1 = Hk,

pkτg
E
τ Hjk

pkτg
E
τ Hjk + (1− pkτg

E
τ )ckhj

, OE
τ+1 = Hj , j �= k,

(19)

and when aτ = 1, τ0 = τs, we have

pkτ+τs(O
A
τ+τs)

=

⎧⎪⎨
⎪⎩

pkτg
A
τ

pkτg
A
τ + (1− pkτg

A
τ )

∑k−1
j=1 Ckj

, OT
τ+τs = A,

0, OT
τ+τs = N ,

(20)
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where we assume the positive and negative ACKs from the

SR can be received by the ST error free. In (19) and (20),

gEτ = gτ (1) and gAτ = gτ (τs), where the superscripts E
and A represent the prediction and transmission, respectively.

The expected utility that the ST obtains at time τ with the

PT operating with the k-th transmit power level, which is

r(pkτ , aτ , k), can be given by

r(pkτ , aτ , k)

=

{[
pkτg

A
τ Dk − (1− pkτg

A
τ )

∑L
j=1 CkjYj

]
τs, aτ = 1,

0, aτ = 0,

(21)

where Dk is the reward that the ST will receive when the

ST transmits with the k-th power level and k = l, and Yk is

the penalty when k �= l.
An ST access policy ε = [d0, · · · , dτ , · · · ] maps the ST

belief space {pkτ , τ � 0} to action space {aτ , τ � 0}. Thus,

the optimal prediction-transmission policy aims to maximize

the expected average utility, which can be given by

max
ε

lim
M ′→∞

∑M ′

m=M+1

∑τm
p −1

τ=0 r(pkτ , aτ , k)aτ/(M
′ −M)∑M ′

m=M+1 τ
m
p /(M ′ −M)

.

(22)

The total utility obtained by the ST during each PT hy-

pothesis is i.i.d.. Thus, by the law of large numbers, the

maximization problem in (22) can be rewritten as

max
ε

E

[
τp−1∑
τ=0

r(pkτ , aτ , k)aτ

]
. (23)

Let Vε(0, p
k
τ , k) denote the expected utility that can be

achieved in each PT hypothesis following policy ε, which is

Vε(τ = 0, pkτ = 1, k) = Eε

[
τp−1∑
τ=0

r(pkτ , aτ , k)aτ

]
. (24)

Then, the maximum utility that can be achieved by the ST

in each PT hypothesis as

V (τ = 0, pkτ = 1, k) = sup
ε

Vε(τ = 0, pkτ = 1, k), (25)

where

V (τ, pkτ , k) = max
{
E(τ, pkτ , k), A(τ, p

k
τ , k)

}
. (26)

In (26), E(τ, pkτ , k) and A(τ, pkτ , k) are the expected utilities

that can be obtained by the ST through prediction and

transmission, respectively. We have

E(τ, pkτ , k) =
L∑

j=1

Pr
[
OE

τ+1 = Hj

]
V (τ + 1, pkτ+1(Hj), k),

(27)

and

A(τ, pkτ , k) =Pr
[
OA

τ+τs = A
]
V (τ + τs, p

k
τ+τs(A), k)

+ r(pkτ , 1, k).
(28)

Lemma 1. V (τ, pkτ , k) is a convex function increasing with
pkτ for given τ and k.

Lemma 2. E(τ, pkτ , k) and A(τ, pkτ , k) are convex functions
increasing with pkτ for given τ and k.

The proofs are omitted here due to the limited space.

It is clear that V (τ, pkτ , k) is derived backward in time

domain in (26), (27) and (28). Thus it will be helpful for the

derivation of the optimal policy if an upper bound of τ can

be established, which is given by

Tk = min

{
τ ′ : gAτ <

∑L
j=1 CkjYj∑L

j=1 CkjYj +Dk

, ∀τ > τ ′
}
.

(29)

In each PT hypothesis with the k-th transmit power level, the

transmission action will not be taken by the ST after Tk as

∀τ > Tk, r(1, 1, k) < 0. Therefore, V (τ, 1, k) = 0, ∀τ > Tk.

According to [13], we find that Tk < ∞ always holds as τp
follows a Poisson distribution in (16). Note that E(τ, 0, k) =
0 in (27) and A(τ, 0, k) = −∑L

j=1 CkjYjτs < 0 in (28).

Combining Lemma 2, we define the probability thresholds as

pk∗τ = min{pkτ : E(τ, pkτ , k) � A(τ, pkτ , k)}. (30)

Then, we can give the optimized protocol as

a∗τ =

{
0, pkτ � pk∗τ or

∑τs−1
τ0=1 a

∗
τ−τ0 > 0,

1, others,
(31)

where a∗τ is the optimal action at time τ .

V. NUMERICAL RESULTS

In this section, numerical results are provided to illustrate

the advantages of the proposed two-stage spectrum sharing

strategy. In the simulation, we set the power level L = 4
and the probability of each hypothesis Pr(Hl) = 0.25. It

is assumed that the noise variance σ2
u = 1, the PT transmit

powers P1 : P2 : P3 = 1 : 2 : 3, and P4 = 0, thus γ1
st :

γ2
st : γ

3
st = 1 : 2 : 3 and γ4

st = 0. The average SNR at the

ST is defined as γst = (1/L)
∑L

l=1 γ
l
st. In addition, we set

the time duration of a sensing slot Tss = 2 ms, the reward

Dk = 1, and penalty Yl = 1 in (21).

For our proposed strategy, in the prediction part of the

second stage, the ST can easily identify the current PT power

level based on the inferred {θ,π, L} in the first stage and Xn,

n > N . Note that in addition to the proposed CCDPGMM,

there are other learning methods to obtain this parameter

set, such as expectation maximization GMM (EMGMM) and

mean shift (MS). Among them, the EMGMM is a parametric

clustering method requiring the prior knowledge of L, while

the CCDPGMM and MS belong to a nonparametric class

without the need for such prior knowledge. Taking into

account the multiple power levels, we define the probability

of correct PT power level prediction as

Pc =

L∑
l=1

Pr{Ĥl|Hl}Pr{Hl}. (32)

In Fig. 2, we illustrate Pc for three different learning

methods, with respect to different γst and Ns. It is shown in
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Fig. 2. The probability of correct PT power level prediction in the second
stage (Pc) versus γst and Ns.

Fig. 2(a) that Pc increases with γst for all the three methods.

This is because the gap between the adjacent transmit powers

increases with γst, rendering them more distinguishable from

the perspective of machine learning. Similarly, Pc improves

with increasing Ns in Fig. 2(b), because a larger Ns results

in a smaller variance of each Gaussian distribution in the

mixture model. In Fig. 2, without the prior knowledge of

L, DPGMM significantly outperforms MS, particularly for

small γst and large Ns. Meanwhile, despite the lack of the

prior knowledge of L, CCDPGMM is only slightly inferior

to EMGMM, and the gap diminishes for increased γst or Ns.

This verifies the advantages of the CCDPGMM over other

learning methods.

Then, we illustrate the impact of different access strategies

in the second stage on the NPLA performance. The NPLA

performance is defined as

U(τ) =
τs
τ

τ∑
τ0=0

aτ0ψ(

τs−1∑
τ1=0

|kτ0+τ1 − lτ0+τ1 |), (33)

where kτ and lτ denote the ST and PT transmit power levels

at time τ , respectively. We have ψ(x) = 1 when x = 0, and

ψ(x) = 0 otherwise. Basically, a larger U(τ) leads to a better

tradeoff between the secondary network throughput and the

interference to the primary network.

In Fig. 3, we compare U(τ) of the proposed non-periodic

spectrum sharing strategy with a periodic one in the second

stage for different τ . Note that CCDPGMM is used in the first

stage for all the cases. As an upper bound, we include a per-

fect system where the ST can always accurately track the PT

power level variation. It is shown that U(τ) of three different

structures remains 0 when τ � 103 due to the learning period

(i.e., no transmission), and approaches certain positive value

when τ > 103. Fig. 3 shows that the non-periodic structure

outperforms the periodic one, which verifies the benefit of

dynamically adjusting the prediction intervals.

VI. CONCLUSIONS

In this paper, we proposed a two-stage spectrum sharing

strategy, where the PT transmits with multiple power levels.
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Fig. 3. The NPLA performance U(τ) for the spectrum sharing strategies
using different structures in the second stage with fs = 5 MHz, Ns = 104,
τs = 2, γst = −12 dB, and ν = 50.

In the first stage, we proposed a CCDPGMM to capture the

PT power variation. Then, we designed a Bayesian inference

method to infer the model parameters for establishing the PT

power profile. In the second stage, we designed a prediction-

transmission method to improve the NPLA performance.

Finally, we verified the effectiveness of the proposed strategy

with numerical results.
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